

Small scale CHP for decentralised energy generation and grid balances: which challenges and opportunities for gasification?

David Chiaramonti **RE-CORD** Renewable Energy Consortium for Research and Development Florence, Italy

RE-CORD: Who we are

- Public-private no profit research center, participated by the Univ.of Florence
- ✓ focused on R&D in Biomass / Bioenergy /Bioproducts
- ✓ Pilot/demo plants, chemical lab

università degli studi FIRENZE

MEMBERS

<u>Public</u>

- Univ. of Florence
 - **CREAR** Interdepartmental Center led by the Industrial Engine.Dept.
 - Montepaldi –Univ. Special Farm.

Pianvallico

Municipalities of Scarperia & San Piero and Borgo San Lorenzo (Florentine Metropolitan area).

<u>Private</u>

Spike Renewables

Engin. company specialized in energy projects.

• Bioentech

Innovative Start-up on thermochem.conversion.

ETA-Florence

Communication, Dissemination, Intern.projects.

Main areas of work

7

UNIVERSITÀ DEGLI STUDI FIRENZE

Budget (contributions) from R&D activities on Biomass/Renewables:

CREAR (2002-2015)	>6.1 M€	
RE-CORD (2012-2015)	≈ 2.3 M€	1
EU/Intern. Projects	14 (3 coord)	
National projects	11 (6 Coord)	

Patents related to the research work of RE-CORD/CREAR personnel

Nr of patents

Publications			
Journal papers	32		
Conf.Proceedings (incl.ISI Indexed)	123		
Edited Intern.Conf.Proceedings	3		
Magazines	7		
Thesis	>70		
Studies (EC, Companies)	7		

RE-CORD

Fast Pyrolysis (use in CHP and Heat)

- Intermediate/Catalytic & Slow Pyrolysis/Carbonisation
- Gasification (fixed bed, small scale)
- HTL e HTC Hydrothermal Conversion of biomass
- Liquid Biofuels (road & aviation) from lipids/VO/UCO
- Lignocellulosic ethanol chain and coproducts
- Algae: engineering of cultivation system + downstream process.
 into biofuels and bioproducts
- Biofuel Policy
- Studies (EC): Sugar Platform,
 - Template First-of-its-kind...

biofuels and biochemicals Final report for European Commission Directorate-General Energy	
Directorate-General Energy	
N° ENER/C2/423-2012/SI2.673791	
A consortium led by E4tech (UK) Ltd, with	
Consorzio per la Ricerca e la Dimostrazione sulle Energie Rinnovabili (RE-CORD) and	
Stichting Dienst Landbouwkundig Onderzoek, part of	
Wageningen University and Research Centre (WUR)	
January 2015	
V1.1	
E4tech 🛛 RE-CORD 🛄 WAG EN IN GEN DER	

E4tech | Strategic thinking in sustainable energy

università degli studi FIRENZE

Renewables, cogeneration ...and.. INTEGRATION

Global scenario: Oil Prices at low end...strong fluctuations

università degli studi FIRENZE

- "Brent" (UK Stock Ex) during last five years.
- 18/1/2016: <u>28.55 US\$/bbl</u>. MIN for last 12 years.
- Same for WTI (North America)
- ✓ IRAN is the 5th largest OPEC oil producer. Lifting sanctions to IRAN → +100.000 bbl/d (3.7 % of their total prod.), and +400.000 bbl/d in 1 month

✓ This generated further drop in barrel value.

30 Nov 2016, Wien (A): agreement reached to reduce oil production by 1,2 Mbbl/d (at 32,5 Mbbl/d)

EC TARGETS

università degli studi FIRENZE

2020 Package

GHG Emissions Reduction 20% compared to 1990 ding via ETS and Effort Sharing Decision

Increase of Renewable Energy Use 20% of total energy consumption Binding via Renewable Energy Directive

Increase of Energy Efficiency 20% compared to baseline scenario Binding via Energy Efficiency Directive

2030 Framework

GHG Emissions Reduction 40% compared to 1990 inding via ETS and ESD methodology

Increase of Renewable Energy Use 27% of total energy consumption Only binding at EU level

Increase of Energy Efficiency 27% compared to baseline scenario Only binding at EU level

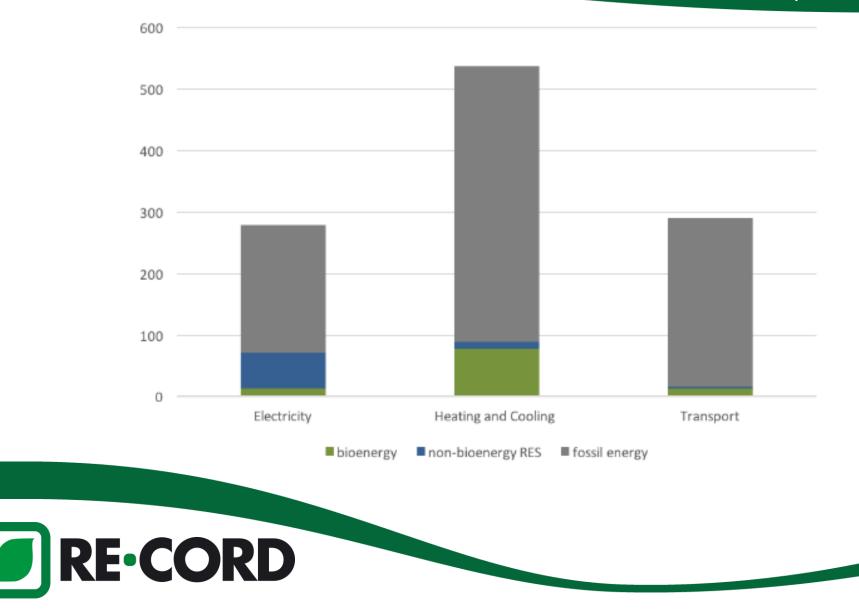
RE-CORD

IEA BIOENERGY / EC-DG ENERGY

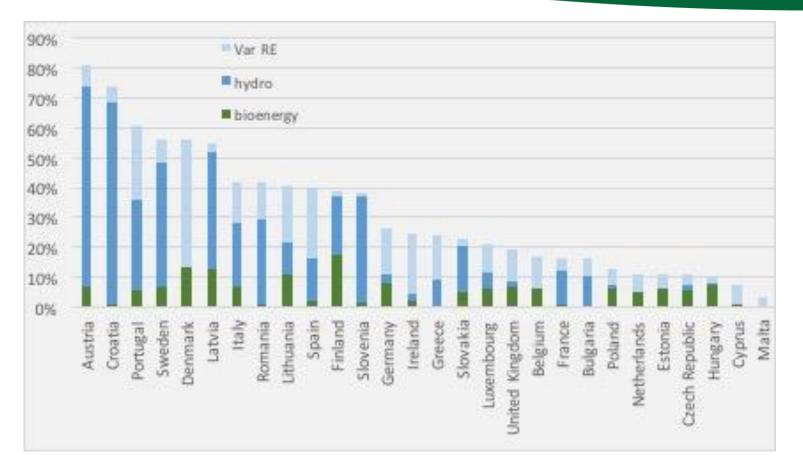
• Study on

BIOMASS FOR BALANCING THE GRID

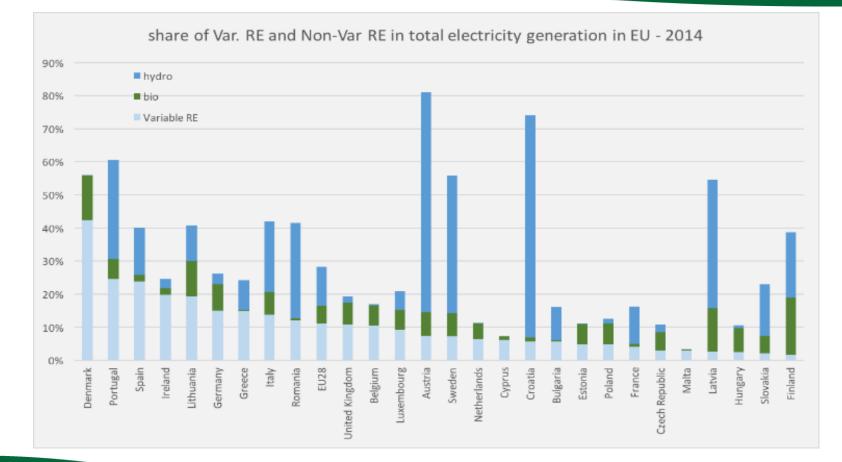
- Two main focuses
 ✓ Policy development
 ✓ Opportunities for R&D
- Final document expected end 2016 (draft ready)


European Commission

Share of bioenergy and other renewable sources in final energy consumption in EU 28 (2013, Mtoe)

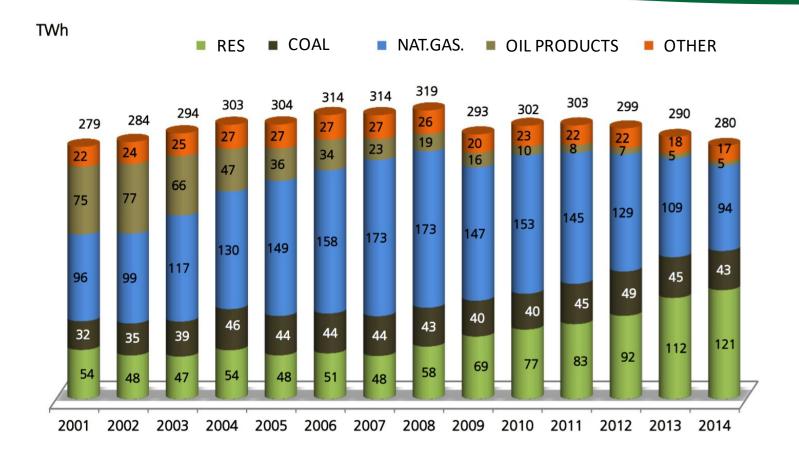

UNIVERSITÀ DEGLI STUDI FIRENZE

Overview of the energy sources that provide renewable electricity in total electricity generation in 2014


università degli studi FIRENZE

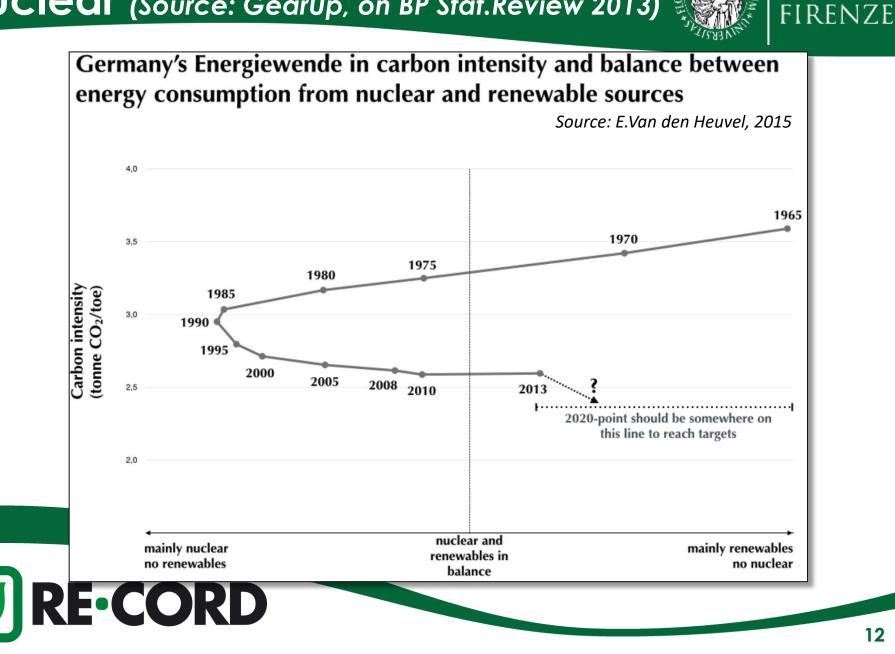
Member States ranked on the share of Variable renewable energy in total electricity generation (in 2014)

RE-CORD



Renewable Power Generation in Italy

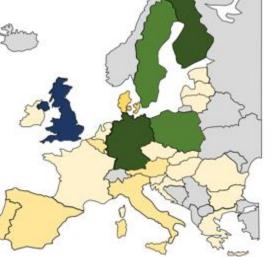
RE-CORD

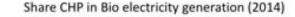


UNIVERSITÀ degli studi FIRENZE

Germany: Shifting back to RES from **Nuclear** (Source: GearUp, on BP Stat.Review 2013)

UNIVERSITÀ


DEGLI ST

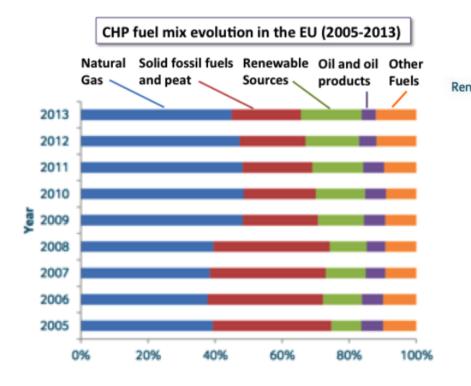

BIOELECTRICITY IN THE EU, AND SHARE OF CHP, 2014 (solid biomass only)

università degli studi FIRENZE

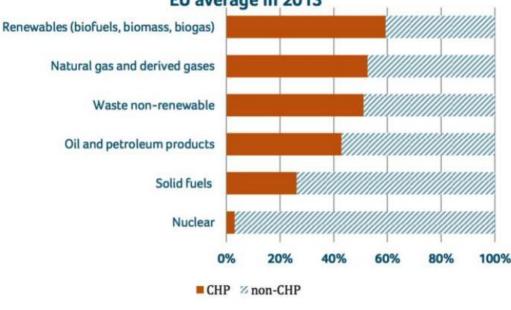
Total Bio electricity (TWh) in 2014

Average share in EU: 63%

Based on: Eurobserver, 2015

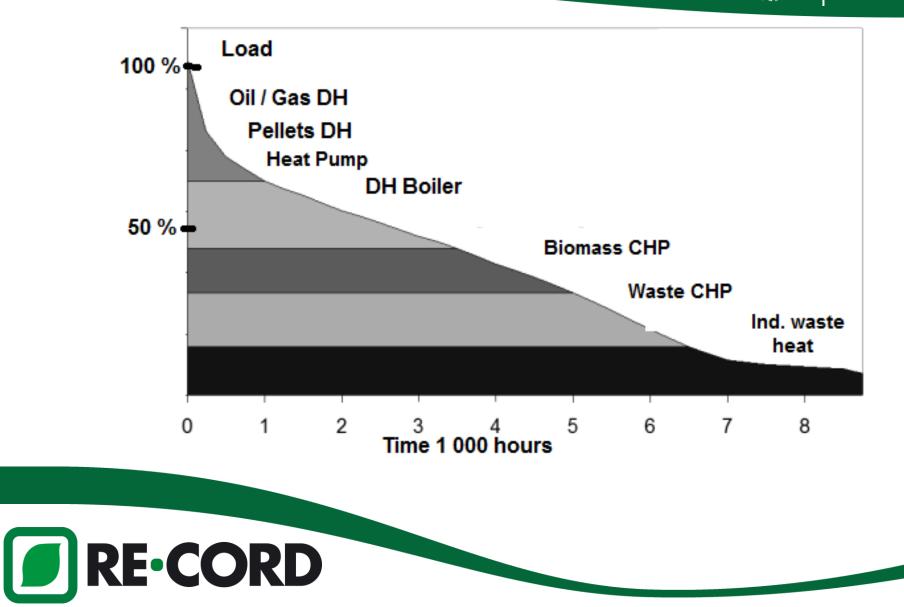


Based on: Eurostat, Eurobserver, 2015


Renewables/Biomass-based CHP in the EU

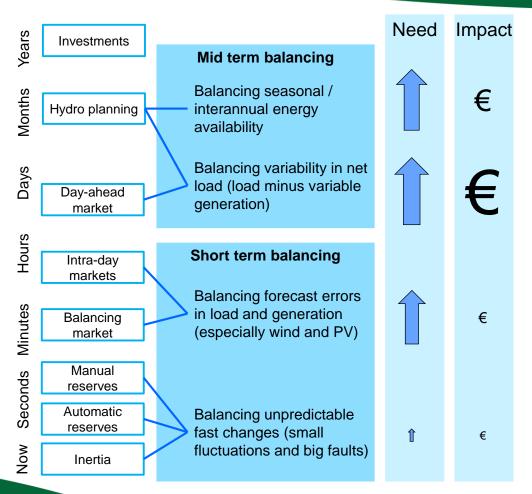
università degli studi FIRENZE

Penetration of the cogeneration principle by fuel: EU average in 2013



Example of DH load curve

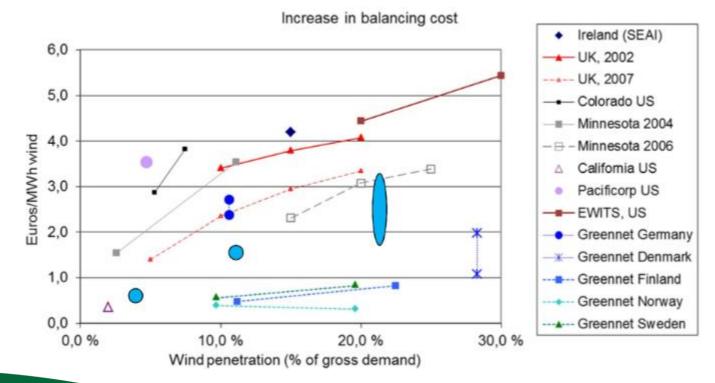
università degli studi FIRENZE



BALANCING THE GRID

RE-CORD

università degli studi FIRENZE

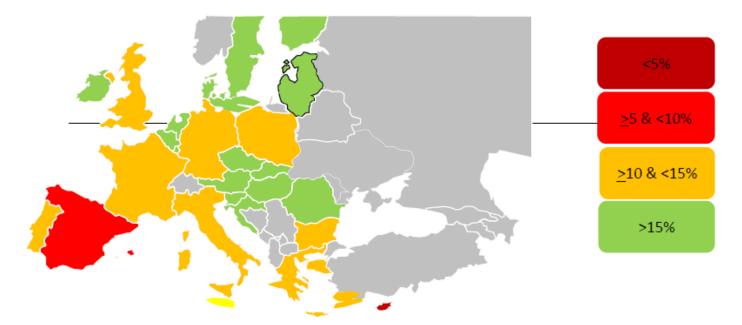

16

BALANCING THE GRID

università degli studi FIRENZE

Increase in balancing costs vs wind penetration. Also the range of imbalance costs paid by wind power in the markets are shown for Denmark, Spain and the Netherlands

Holttinen et al. Design and operation of power systems with large amounts of wind power, Final summary report, IEA WIND Task 25, Phase two 2009–2011. VTT Technology 75, Espoo 2013



Interconnection

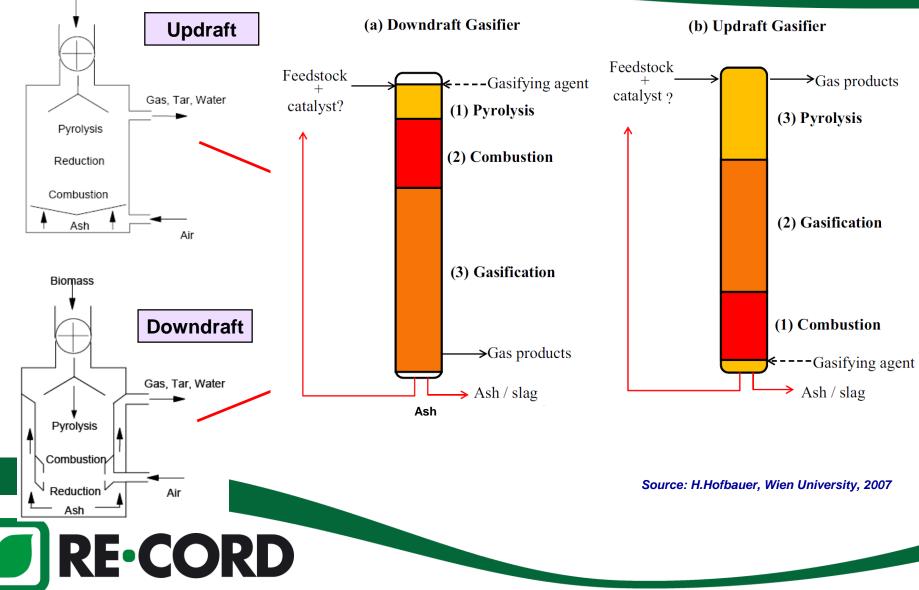
università degli studi FIRENZE

As part of the EU Energy Union a target of a minimum of 10 % interconnection capacity between the Member States has been set, and European wide transmission planning by ENTSO-E defines Projects of Common Interest (PCI) for implementation to 2020

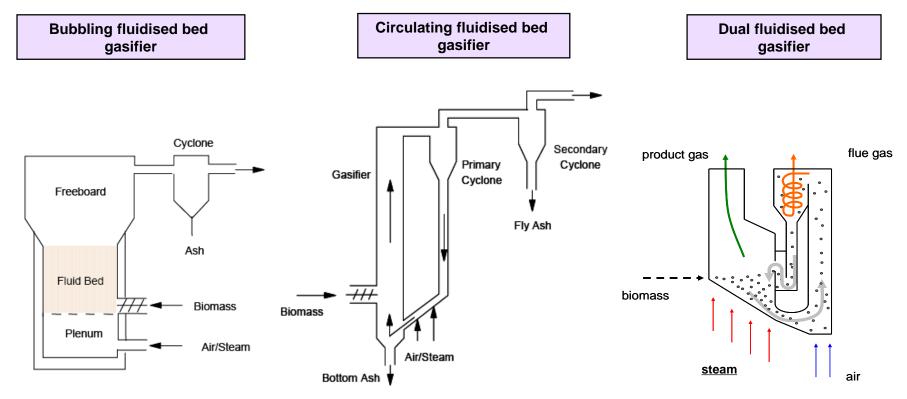
Expected status of grid interconnection capacity level 2020 after implementation of Point of Common Interest

The Natural Gas Network -BIOMETHANE

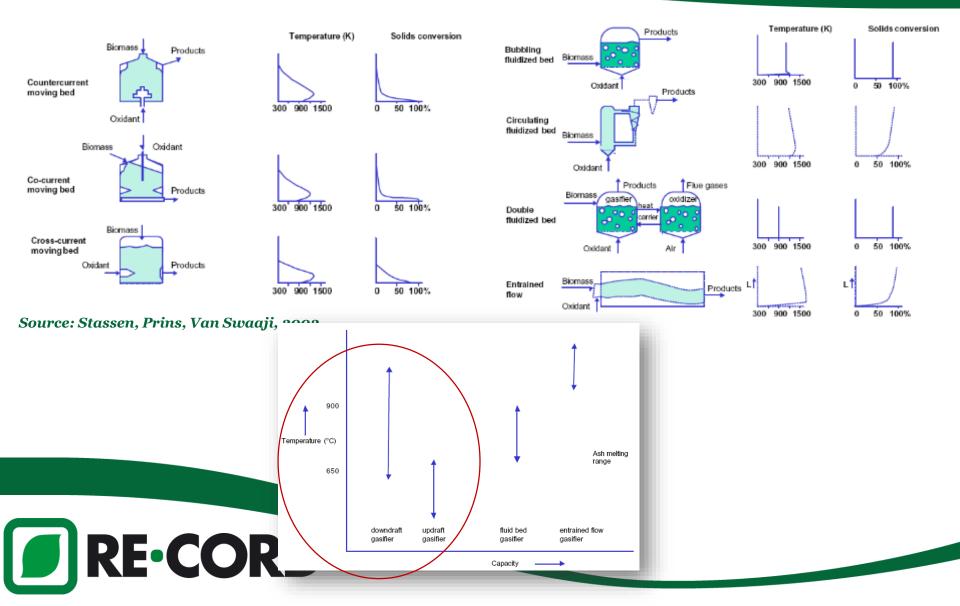
università degli studi FIRENZE


Small Scale Gasification in the CHP context

Main types of Biomass Fixed-bed Gasifiers


Biomass

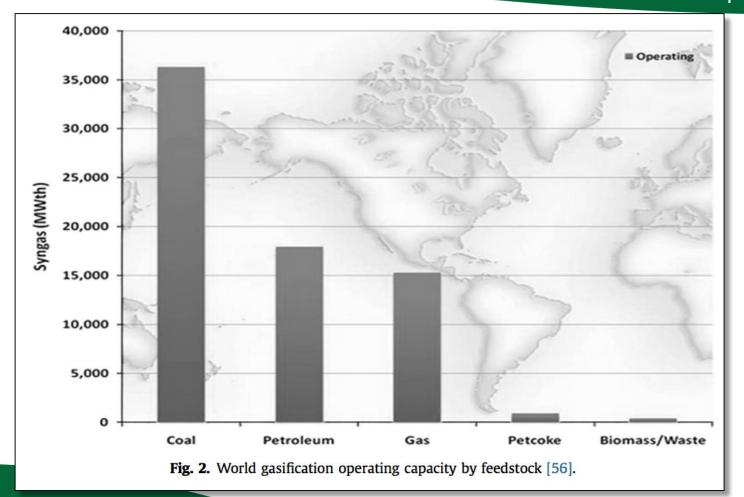
università degli studi FIRENZE



Source: H.Hofbauer, Wien University, 2007

Biomass Gasifiers – Temperature distribution

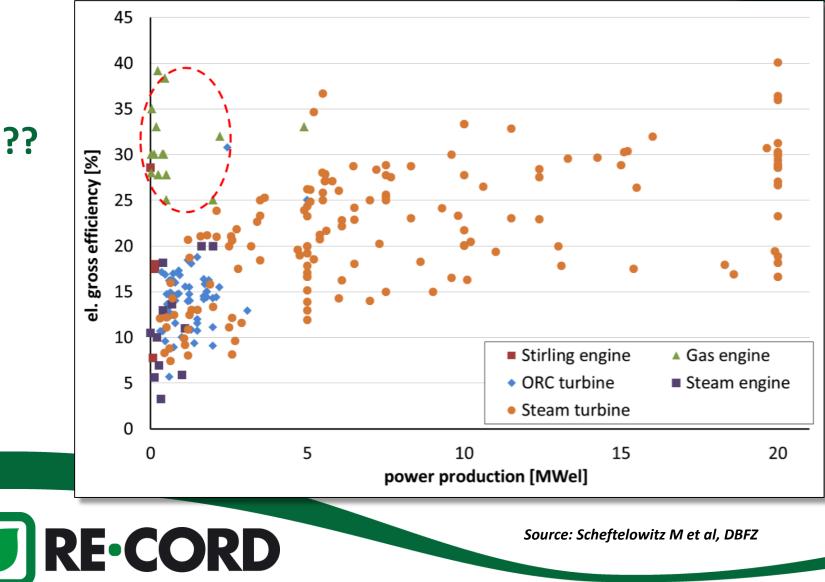
università degli studi FIRENZE



Installed capacity of gasification vs type of feedstock

RE-CORD

università degli studi FIRENZE



A.A. Ahmad et al. / Renewable and Sustainable Energy Reviews 53 (2016) 1333-1347

Gasification vs Steam/ORC/Stirling systems

università degli studi FIRENZE

25

Biomass pretreatment

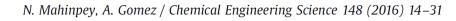
Biomass gasification steps

università degli studi FIRENZE

- **<u>Pyrolysis</u>**: biomass heating (usually up to 700 ° C), producing char and releasing volatiles. Tars also produced when volatiles liquefy at low temperatures.
- <u>**Oxidation</u>**: Char and volatiles burnt with O2 to produce the needed gasifying agents (steam & CO_2) and CO. Exothermic reaction: heat is released for following reduction reactions.</u>
- <u>**Reduction**</u> (mainly gasification reactions): Char + tar + hydrocarbons gasified with CO_2 & steam.
 - Producer gas mainly composed by CO, H₂, and CH₄.

RE-CORD

- Endothermic reactions, thus heat from oxidation reactions is used.
- Steam reforming (*endothermic*) of char and tar, as well as water–gas shift reactions (*exothermic*).
- Reduction of H_2O in steam gasification = the most effective way to increase H_2 .
- Boudouard reaction (endothermic) to CO. CO_2 may also be recirculated with O_2 within oxyfuel combustion/gasification.


N. Mahinpey, A. Gomez / Chemical Engineering Science 148 (2016) 14-31

Underdstanding Biomass gasification

università degli studi FIRENZE

- <u>Feedstock</u>: normally solid biomass (or solid fuels), of different physical & chemical characteristics, even if liquid feedstocks can also be processed.
- <u>**Reactor**</u>: it determines how solid is maintained in the reaction chamber, and the gas flow direction. CO2 and steam gasification agents.
- <u>Heat transfer and heat source</u>: radiation is most relevant heat transfer mechanism. Thus, expecially as scale increases, indirect heating is not sufficient. Most often direct heating through superheated steam or partial combustion (air, O2).
- <u>**Producer gas/Syngas quality</u>**: Gas Cleaning mandatory for using the gas, essential to make a difference towards direct combustion</u>
- **End use/application**: heating, power, CHP, chemical synthesys

Underdstanding Biomass gasification - reactions

Main Gasification reactions

- C+CO2 \leftrightarrows 2CO $\Delta H_{R_1} = 172.5 \text{ kJ/mol}$
- C+H2O \rightarrow H2+CO ΔH_{R2} = 131.3kJ/mol
- CO+H2O \leftrightarrows H2+CO2 ΔH_{R_3} = 41.2kJ/mol
- C+H2 \rightarrow CH4 ΔH_{R4} = 74.5kJ/mol

(Boudouard, Endothermic)

(Steam Gasif., Endoth.)

(WGS, Exoth., <u>Homog</u>.)

(Methane production, Exoth.)

- CH4+H2O \subseteq CO+H2 ΔH_{R_5} = 205.8 kJ/mol (Steam Meth Ref., Endo, <u>Homog</u>.)
- ✓ Steam promotes (i) Steam Ref (endoth) of char & tars (ii) WGS (exoth)
- ✓ Boudouard react (taking place at T > 700 ° C) : controlling step at low gasification T in CO2 gasification (<1000 °C)
- ✓ If HR>200 ° C/min \rightarrow no weight loss difference during pyrolysis step. Separating *Pyro from Gasif maybe not the best solution (Pyro >> fast than Gasif), as it affects* char reactivity

N. Mahinpey, A. Gomez / Chemical Engineering Science 148 (2016) 14-31 **RE-CORD**

Char reactivity and process efficiency vs product (gas) quality CHAR REACTIVITY

- T and HR (more than p) in pyrolysis
 - \checkmark Strong influence on char gasif. reactivity
 - ✓ \uparrow T HR → \downarrow process thermal efficiency
- If Pyrolysis (P) is part of Gasification (G), P Res.Time (Rt) is < than G Rt, as P is >> faster than G (irrespective to gasifying agent).
- If P and G are done in different/separated reactors, <u>P Rt is</u> <u>significantly increased, and char is <</u> <u>reactive</u>
- time char held at high T is not controlled and not negligible vs tot Rt (<u>Char "history</u>")
- → Kinetic models not reflecting actual behaviour at industr. scale (as based on isothermal pyrolysis in inert gas, far from industrial scale conditions)

RE-CORD

 \rightarrow As HR $\uparrow \rightarrow$ Reactivity \uparrow

GASIFICATION & GAS QUALITY

Summary of the effects of increasing temperature on syngas production and reaction rate.

Temperature	Characteristics
Low (< 1000 °C)	 CO decreases, H₂ increases, WGS reactions more dominant than Boudouard reactions H₂/CO ratio increases for air-steam gasification due to WGS and steam reforming reactions CO/CO₂ ratio decreases due to a balance between CO-producing and CO-consuming reactions Slower reaction rate Longer residence time to achieve high conversion
High (> 1000 °C)	 Tars may be produced CO and H₂ increase due to Boudouard, steam reforming and WGS reactions CH₄ decreases due to steam reforming H₂/CO ratio increases for air-steam gasification Tars decrease due to thermal cracking and steam reforming
Very high (\sim 1500 °C)	 reforming Improved cold gas efficiency (CGE) Higher reaction rates and carbon conversion H₂ and CO decrease due to sintering Reaction shifts to combustion from gasification region Particles collapse and shrink Lack of surface area

N. Mahinpey, A. Gomez / Chemical Engineering Science 148 (2016) 14–31 30

Actual operation conditions of small-scale fixed bed gasifier

- università degli studi FIRENZE
- Very often the <u>operation</u> of actual <u>small scale industrial gasifiers</u> is performed <u>far from design conditions</u>
 - It may be due to **inadequate feedstock** (moisture, size, composition...), or **gasifier design**, or **distribution of flows**, etc
- Insufficient T in key sections of the gasification system
- Reduced Cold Gas Efficiency, higher tar load in PG
- \rightarrow Interesting evaluation carried out by <u>Pittaluga in 2008</u>

Campione N°	Contenuto idrico w (%)	Potere calorifico inferiore (kJ/kg)	
1	10,05	16408,65	
2	12,5	15895,21	
3	11,1	16188,60	
4	11,2	16167,64	
5	11,8	16041,90	
Valore medio	11,33	16140,40	

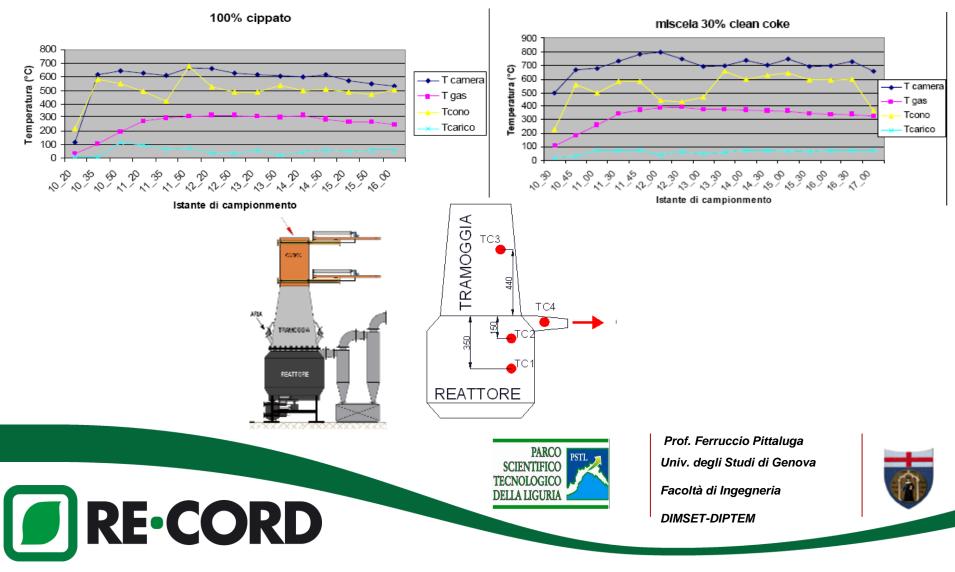
RE-CORD

100 % wood chin

100% clean coal

Densità (kg/m³)	Contenuto idrico w (%)	Potere calorifico inferiore (kJ/kg)
369,50	4	31395
372,25	4,25	31395
367,20	3,95	31395
370,10	4,1	31395
367,00	3,95	31395
369,21	4,05	31395

70% wood chips - 30% clean coal


Densità (kg/m³)	Contenuto idrico w (%)	Umidità u (%)	Potere calorifico inferiore (kJ/kg)
281,00	4,00	4,17	20716,78
282,50	4,50	4,71	20716,78
282,00	5,00	5,82	20716,78
281,75	3,00	3,09	20716,78
281,95	3,50	3,63	20716,78
281,84	4,00	4,28	20716,78

Small scale imbert-type gasifier Wood chips vs mix with coal

università degli studi FIRENZE

Temperatures

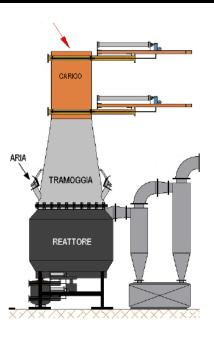
Small scale imbert-type gasifier Wood chips vs mix with coal

università degli studi FIRENZE

Energy balance

100 % wood chips

biomassa in PCI biom	13 kg/h 16.3 MJ/kg	P in	58.9 kW
syngas out	26.7 kg/h 4 MJ/m3	P out	26.6 kW
PCI syngas rendimento ga		45	2%

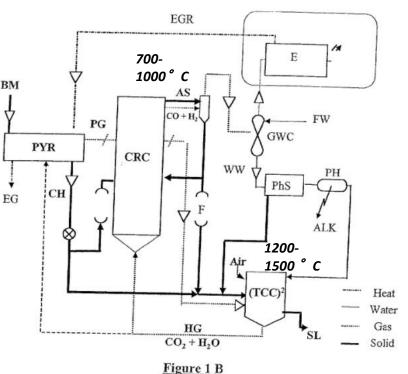

70 % wood chips – 30 % clean-coke

miscela in PCI miscela	8.8 kg/h 20.6 MJ/kg	P in	50.4 kW
syngas out PCI syngas	30.2 kg/h 4.4 MJ/m3	P out	33.1 kW
rendimento gassi		65	7%

PARCO SCIENTIFICO TECNOLOGICO DELLA LIGURIA

Prof. Ferruccio Pittaluga Univ. degli Studi di Genova Facoltà di Ingegneria DIMSET-DIPTEM

Double stage

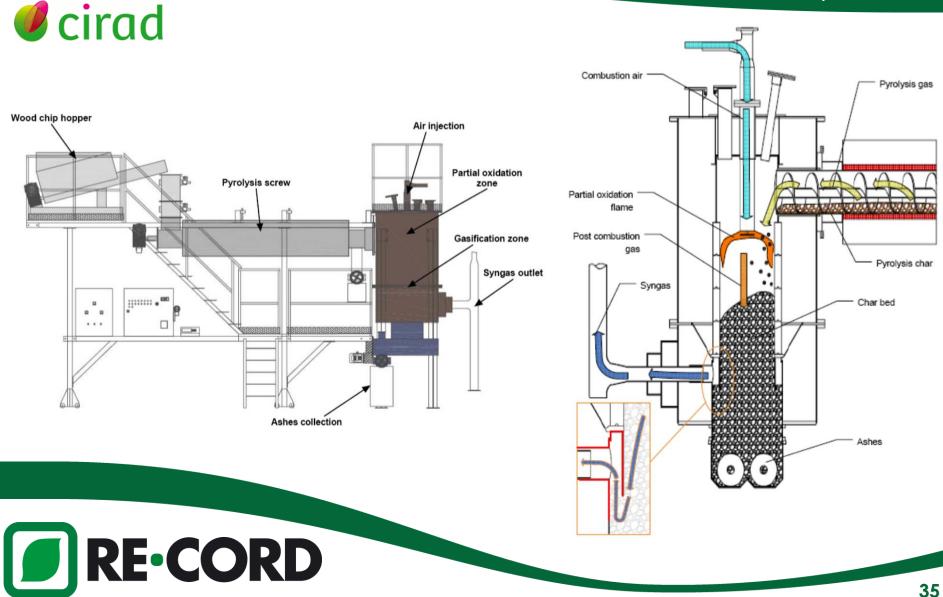

università degli studi FIRENZE

🥑 cirad

Biomass gasification process, and apparatus, and their applications EP 1312662 A2 - 2003

Philippe Girard Laurent Van de Steene Thomas Koch Gérard Antonini Ammar Bensakhria

- PYR:Pyrolysis Chamber
- Char (CH) Reduction Chamber: CRC
- PG: Pyrolysis Gas
- CH: Char
- AS: Ashes
- GWC: Gas Washer Cooler
- WW: Waste Water
- ALK: Alkali Vapours
- PhS: Phase Separator



- Total Tar Combustion and Tar Cracking Chamber: (TCC)²
- HG: Hot Gases
- EGR: Exhaust Gas Recirculation
- EG: Preheating gases
- SL: Liquid Slag

Double stage

UNIVERSITÀ degli studi FIRENZE

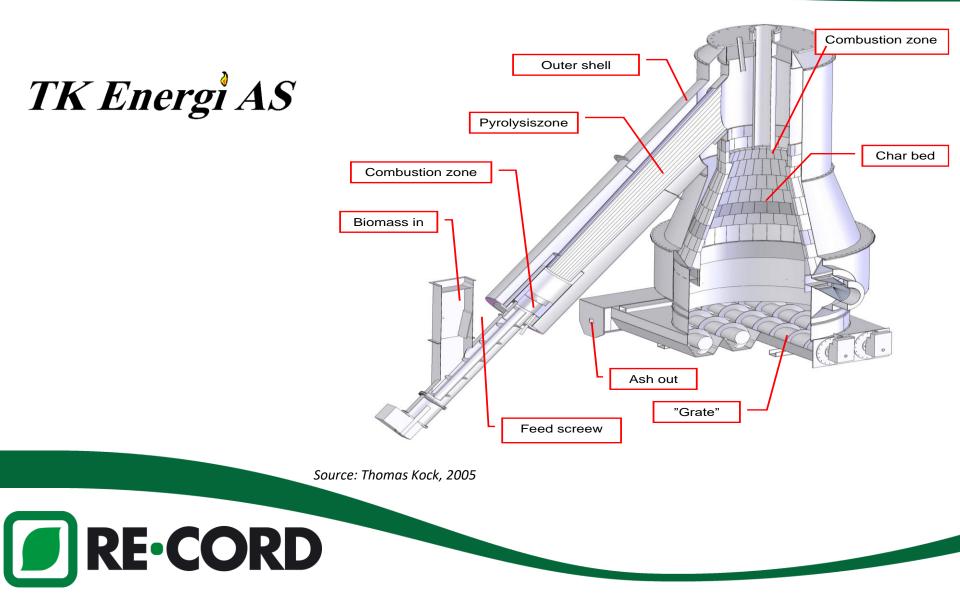
Duel stage: Operational experience

RE-CORD

università degli studi FIRENZE

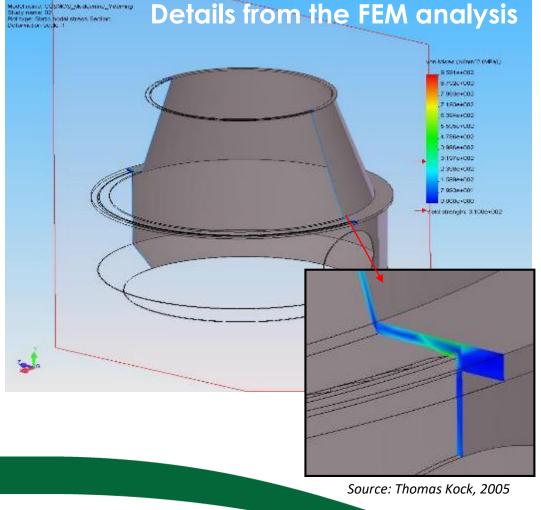
Viking gasifier, DTU CHP application with 17 kWe power production

Viking - Denmark

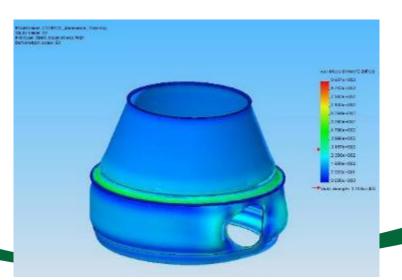

UNIVERSITÀ DEGLI STUDI FIRENZE

• Two stage gasifiers: very effective tar reduction even at small scale

Two-stage gasifiers – TK Energy



Two-stage gasifiers – TK Energy Health & Safety

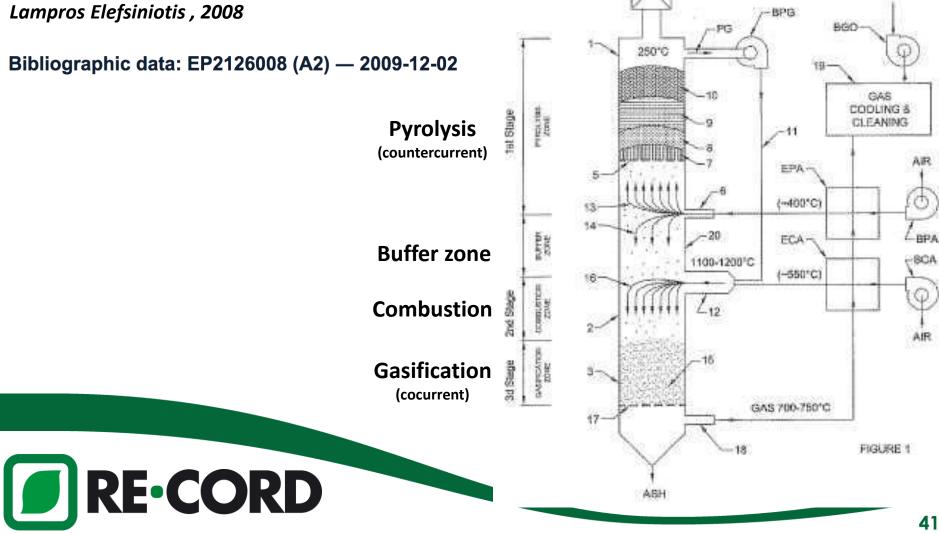


università degli studi FIRENZE

TK Energi AS

- Cold pressure barriere calculated to with stand maximum explosion pressure
- Insulation materials will not reduce and reduce strength of outer shell
- No moving parts that can cause blockages

Xylowatt

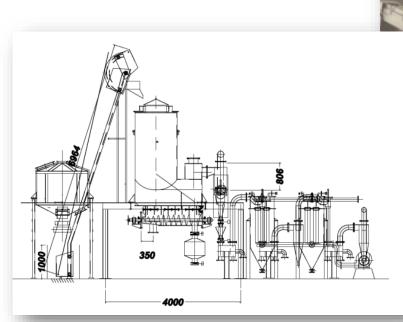


Three stage

THREE-STAGE GASIFIER, FIXED BED, WHICH HAS BUFFER ZONE OF GASEOUS FLOW BETWEEN PYROLYSIS ZONE AND COMBUSTION ZONE Lampros Elefsiniotis, 2008

Bibliographic data: EP2126008 (A2) — 2009-12-02

SOLID FUEL


UNIVERSITÀ DEGLI STUDI FIRENZE

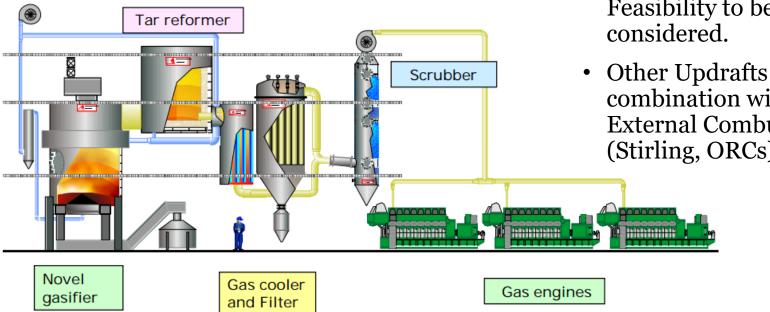
GAS 50°C

IIS Open-Top Twin-Fire

università degli studi FIRENZE

- Large High Temperature reaction zone combined with Extensive Gas Cleaning
- Mix of dry and wet gas cleaning steps

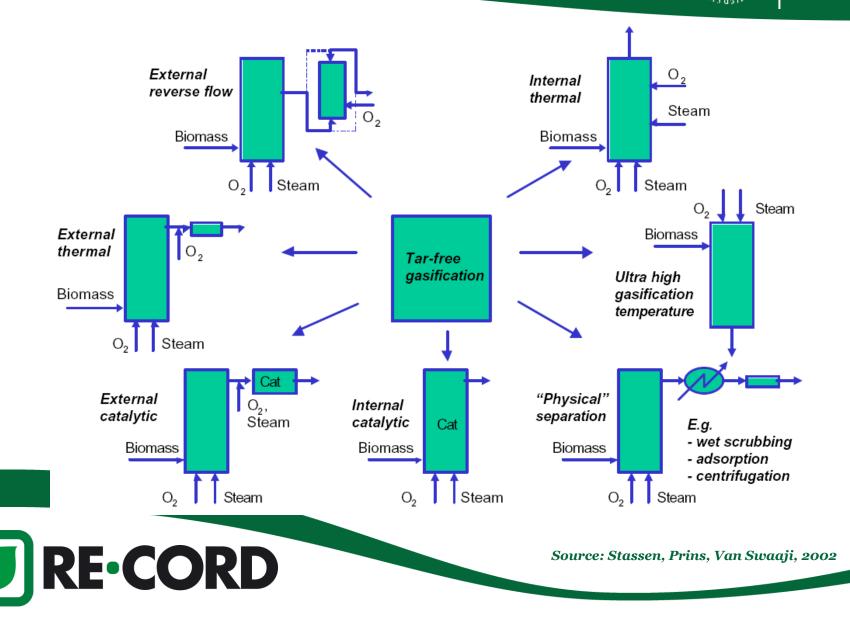
Updraft configurations



UNIVERSITÀ DEGLI STUDI FIRENZE

Novel power plant: 1.8 MWe + 3.3 MW heat

Supplier: Condens Oy


Kokemäki, Finland

- Few other cases of Updraft Gasifiers proposed in CHP.
- Extensive cleaning needed. • Feasibility to be carefully
- Other Updrafts proposed in combination with with **External Combustion Systems** (Stirling, ORCs)

Systems for tar removal or conversion – Gas Cleaning

Tar reduction potential for different systems

università degli studi FIRENZE

Table 4: Residual tar matter contamination after treatment in $[mg/m^3 \text{ st.c. dry producer gas}]$ [3,4,6,7,14], with 500 mg m³/st.c.dry at the inlet

Technology	Contamination at the outlet
In situ catalyis	50-200
Part. combustion	10-100
Post catalyis	50-250
Wash tower	300-400
Spray tower	400-500
Sieve colum	100-200
Packed colum	100-200
Packed colum, solv.	10-100
Venturi scrubber, drop.	40-200
Adsorption	50-200
Co adsorption on filtercake	200-500
Electric precipitator cooled	5-50

Kleinhappl, 2002

- Different systems with variable performances.
- Need to select the most appropriate and cost-effective solutions for the specific plant scale and operator skills.

RE-CORD

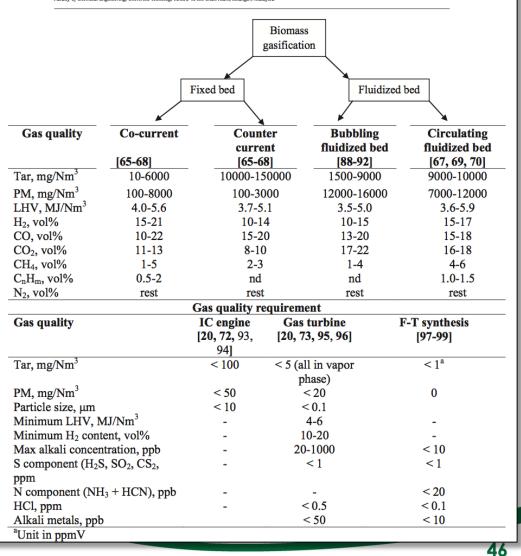
Gas Cleaning requirements

- Tars, particulate matters, NH₃, H₂S, HCl and SO₂
- Tar the most relevant
- Tar tolerance (CHP) limit :
 ✓ ~ 500 mg/Nm³: compressors
 - ✓ ~ 100 mg/Nm³: IC engines
 ✓ ~ 5 mg/Nm³: industrial GTs
- IC & $\mu \text{GT} \rightarrow \underline{\text{small scale CHP}}$
- Tar & NH₃ formation → f (airfuel ratio & process T)
- \uparrow T & A/F ratio \downarrow Tar/NH₃ but
 - Costly materials
 - Less chemical energy in the producer gas

RE-CORD

Renewable and Sustainable Energy Reviews 40 (2014) 118–132 Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews


journal homepage: www.elsevier.com/locate/rser

CrossMark

Biomass gasification gas cleaning for downstream applications: A comparative critical review Mohammad Asadullah *

Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Main gas cleaning methods

General classification	Cold gas cleaning		Hot has cleaning	
Specific Classification	Dry cleaning	Wet cleaning	Thermal treatment	Catalytic treatment
Main critical issues	Disposal of tars	Disposal of tars	Slow reaction rates (inertness of poly- aromatic HC). High T and Activat.Energy to start reactions.	Slow reaction rates (inertness of poly- aromatic HCs). High T and Activation Energy to start reactions. Adsorption of impurities (HCl, H2S, SOx) on cat.active sites. Tar conversion to cocke on cat.surface/active sites. Cat.resistant to hot gas clean-up. Cat.selectivity to gas and not coke pathway
Type of equipments	Cyclone, rotating particle separators (RPS), electrostatic precipitators (ESP), bag filters, baffle filters, ceramic filters, fabric/tube filters, sand bed filters, absorbers, etc.	Spray towers, packed column scrubber (wash tower), impingement scrubbers, venture scrubbers, wet electrostatic precipitators, wet cyclones, etc.	High-temperature devices such as ceramic filter/candle filter	Primary bed in the gasifier or in the secondary reformer <i>Source: Asadullah, 2016</i>

Cold gas cleaning

- Engines need gas at T_{amb} .
- Cooling before or after cleaning.
- Dry vs wet
 - Dry: mainly physical removal without using water → no water cleaning system needed.
 - Wet: cools the gas & collect particles and impurities. H3, HCl, H2S and SO2 highly soluble in water. Very effective. Necessary to reach sufficient residence time (difficult at large scale). Some tars are however non polar and do not dissolve in water and constitute a separate condensate. Some impurities can escape the scrubber. Water cleaning system to be installed.
- Wet scrubbing is normally combined with physical treatments, e.g. cyclones and filters.

	Gasifier type	Feedstock type with feeding rate			Gas composition (vol%)				Tar (mg/	PM (mg/	LHV (MJ/	Cold gas	Electrical eff., (%)	Ref.
(kg/h)		-		H ₂	СО	CH ₄	CO ₂	N_2	Nm ³)	(Mg/Nm^3)		eff., (%)	enii, (70)	
	Fixed bed gasifier Fixed bed downdraft	r Wood chip, 250	Cyclone, spray tower, packed column scrubber, condenser, a purification tower, two wire mesh mist eliminators	16.1	16.6	2.3	13.8	51.2			4.7	53.0	16	[118]
bu	Double air stage downdraft gasifier	Eucalyptus wood, 10–12	Cyclone, heat exchangers, and a bag house filter	16.8	19.0	0.9	13.6	50.6	< 35	< 10	4.6	67.0		[119]
nin	Downdraft gasifier	Sawdust and sunflower seed pellet, 54	Cyclone, venture scrubber, chiller condenser, two saw dust filter and a bag filter	17.2	21.2	2.5	12.2	67.7			5.6	67.7		[120]
ea	Fixed-bed twin fired		A cyclone and a RME (rapemethylester)/ H_2O quench system followed by a wet electrostatic precipitator (ESP)	18.3	20.4	2.5	14.7	45.5	180– 240	0.7	5.8	63.5		[121]
U U	Two stage downdraft	Corncob, 45–50	Heat exchanger, bag filter, limestone+activated carbon+desulfurization sorbent packed in a absorber	25– 38	25- 38	<2	16- 25	8.0– 10.0	20	20				[122]
S	Two stage downdraft	Wood chip	Heat exchanger, bag house filter, paper cartridge filter, demister	32.5	15.0	2.1	19.5	30.0	15		6.0		25	[123]
σ	Downdraft gasifier	Olive kernel, 100– 110	Cyclone, venture scrubber, heat exchanger, chiller, mist eliminator, fine filter	24.1	10.7	4.2	4.6	75.0	10	10	4.46	75.0	16	[124]
ð	Dual fired downdraft gasifier	Wood, 98	Heat exchanger, bag house filter and paper cartridge filter	21.3	20.5	1.1	10.7	89.7	35	3	5.3	89.7	21	[125]
σ	Downdraft gasifier	Rice husk, 85	Cyclone, wet scrubber, bag filter	6.9	17.2	4.1	19.4				5.6			[126]
Cold	Downdraft Downdraft gasifier	Wood chips, 50 Wood chips and rice husk, 80 and 120	Physical filter Cyclone, water scrubber, chiller scrubber	9.34	29.4	0.2	9.71	73.0			5.1 5.52	73.0	10 18	[126] [126]
	Fixed bed down draft gasifier	Wood chip	Cold gas cleaning								4.6	70.0– 75.0		[126]
	Fluidized bed gas	-	Dilot gas cleaning using CaO absorber guelons	221	25 1	10.4	10.2	70.0		21	12 7	70.0		[127]
	bed steam gasification	Poplar chips, 57– 92	Pilot gas cleaning using CaO absorber, cyclone and cold gas filter		25.1					2.1	12.7	70.0		[127]
	Dual fluidized bed		Heat exchanger, filter and scrubber	50.6	16.5	12.9	12.3	10.0	1000					[128]
	Bubbling	Pine, maple-oak wood, seed corn, 86–170	Cyclone, bag house filter, iso-propyl alcohol impinger	16– 17	19– 21	6–7	19– 20				8.26			[129]
	Fluidized bed	Sewage sludge, 570	Cyclone, gas cooler, granular bed filter, Ceramic filter, water absorber, packed column for NH ₃ and	1 3.8	13.3	4.2	13	54.7			4.7	70		[130]
			H ₂ S								Sourc	e: Asa	dullah, 2	2016

Details of cold gas cleaning including gasifier and feedstock types, equipment involved in cleaning and gas composition and quality.

Hot gas cleaning

UNIVERSITÀ DEGLI STUDI FIRENZE

- Three main routes for hot gas cleaning
 - \checkmark Filtration
 - \checkmark Tar removal by thermal cracking
 - \checkmark Tar removal by catalytic cracking
- Hot gas filtration
 - \checkmark Mostly cyclones and ceramic candles to remove particulate & tars
 - ✓ Critical issues: Pressure build-up (\rightarrow Coupled Pressure Pulse CPP cleaning)
 - ✓ Ceramic candles: good perf.with particulates, poor with tars (which remaines in the gs phase and can pass through the candle filter)

Hot gas cleaning

- Thermal Tar Cracking
 - \checkmark At high temperature (order of 1000-1300 $^\circ\,$ C) large organic molecules cracked to smaller and non-condensable ones
 - ✓ Higher Air-Fuel ratio normally necessary to achieve the necessary high T → reduced heating value of the gas

Details of hot gas cleaning data derived from different gasifiers.

Gasifier and feedstock type	Scale (kg/h)	Temperature (°C)	Gas compositio	n (vol%)	LHV (MJ/Nm ³)	Cold gas efficiency (%)	Ref.			
lecustock type			H ₂	СО	CH ₄	CO ₂	Tar (mg/ Nm ³)		enterency (%)	
Downdraft Downdraft	Pilot, 12 Large-scale demonstration, 5000	1000 1000	14.0 13.0–15.0	24.0 20.0–23.0	2.0	14.0 10.0–11.0	< 50 -	5.8 4.2-4.3	60-78 76	[30] [114]
Downdraft	Pilot, 18.7	900	8.7-13.2	20.8-23.6	3.6-5.2	9.3-14.5	4800	6.1	67	[141]
Updraft and Downdraft	Pilot, 30	950	10.4	15.1	0.3	12.8	450	3.2	-	[13]
Regenerative downdraft	Pilot, 5	1000	14.1–16.3	14.2–21.6	5.2-2.5	15.2–10.3	44–107	5.2–5.4	-	[142]
Down draft	Pilot	954	11.1-20.9	14.3-20.2	2.9-2.8	-	45	4.2-6.0	60-7	[143]
Downdraft	Pilot 5.4	1000-1200	11.1	18.6	2.2	11.2	3000	4.7	-	[115]
Down draft	Pilot 3–4	1050	11.11	18.56	2.0	13.12	5	3.8-4.0	63-6	[116]
Continuous Fixed bed	Pilot 4	1050	15.9	9.8	0.2	10.8	-	3.4	-	[144]
Downdraft	Pilot 23.5	900-1200	17-23.3	9.9-13.5	1.5-2.8	9.9-14.5	-	4.1-5.4	63	[117]
Downdraft	Pilot 15	1100	10–12	18–22	< 1	5–20	-	4.2	-	[145]

Source: Asadullah, 2016

Hot gas cleaning

• Catalytic Tar Cracking

- ✓ Magnesite (MgCO₃), olivine (magnesium iron silicate (MgFe)₂SiO₄), dolomite, nickel-based catalysts (as commercial Ni−MgAl₂O₄).
- ✓ Barrier: poisoning of catalysts (e.g. S for nickel-based catalysts)
- ✓ Investigation by Corella et al showed that Ni-based catalysts in secondary bed can survive only when tar conc.at gasifier exit is < 2 g/Nm³, while normally it is 2.25-42 g/Nm³ → primary bed with dolomite to reduce tar to 2 g/Nm³.
- \checkmark Recent work by Asadullah et al on novel metal catalyst (Rh) at rather low T (650-700 $^\circ\,$ C), and on char-supported iron catalysts

Gasifier and feedstock type	Scale (kg/h)	Catalyst type/non-catalytic	Gas com	position (v	LHV (MJ/Nm ³)	Ref.				
	(Kg/II)	type/non-catalytic	H ₂	СО	CH ₄	CO ₂	N ₂	Tar (mg/Nm ³)		
Fluidized bed for wood	20	Sand Primary bed	21.9	31.7	8.6	30.7	31.5	10.1	_	[152]
Fluidized bed for wood	20	Olivine (MgFe) ₂ SiO ₄ Primary bed	19.4	30.1	8.9	36.0	53.1	12.8	-	[150]
Fluidized bed for wood	20	Magnesite (MgCO ₃) Primary bed	35.9	12.7	5.5	42.6	49.0	2.2	-	[152]
Circulating fluidized bed, Wood Miscanthus	20	Ni-MgAl ₂ O ₄ Secondary bed	45	17	1.8	-	-	-	-	[154]
Fluidized for Pinewood chip	Pilot 10	Calcined dolomite in bed	43	27	4.8	20	_	2000-3000	12.3	[156]
Bubbling fluidized bed for Pinewood chip	10	Secondary bed dolomite	38	36.9	7.2	33.0	-	1720	15.0	[157]
Bubbling fluidized bed for	5-20	Commercial Ni catalyst	51-59	24-32	0.2-1.6	9–23		5-20	10-12	[161-163]
Pinewood chip		Source: Asadulla	h, 2016							

Details of catalytic hot gas cleaning data derived from different gasifiers.

Conclusions on gas cleaning

Gas composition	Tar content	Gas Heating Value & Cold Gas Efficiency				
High T (>1000 °C) promotes CO & H production Lower Air-to-Biom ratio favor CO, H2, CH4 and higher HCs formation Catalysts favor the yield of combustible gas	Tars can be either removed by filtration or inhibited from forming (but the high T needed are problematic). (1) mineral, (2) nickel based, (3) noble metal catalysts and (4) iron based catalysts New iron-based catalysts on activated charcoal, cheap and resistant towards deactivation.	Several methods developed. Dry and wet methods, and combinations of these two. Cold and Hot methods as well. Water scrubbing also cools the gas.	 Addition of steam increases H2 content (WGS reaction), but overall HHV is unchanged. Catalytic tar reforming also contributes to increase gas HHV (as it also helps to reduce the ER in the gasification reactor). Higher input of gasifying agent means reduced CGE. Catalytic tar reforming, working at lower T, contributes to higher CGE 			
Expensive materials to withstand high T Low A/B ratio favor Tar formation (handling & disposal of tars)	Catalysts requires < 2 g/Nm3 tar content in the gas at inlet (double bed necessary). Catalysts can be deactivated by poisoning substances)	Downstream technologies normally requires particulate levels < 50 mg/Nm3.	Commercial catalysts can be deactivated on long-runs. New catalysts (such as iron- based char-supported ones)			
disposal of tars)	poisoning substances)		Source: Asadullah, 20			
	400 Mixe oxyger	ed Phenolic Alkyl	700 °C800 °C900HeterocyclicPAHPAethersLar			
		Sources	Elliot, 1988			

Final remarks on Small Scale CHP

- The stable and reliable operation of small scale CHP gasification system is essential towards economic and environmental sustainability of Business Plans
- An often underestimated issue in planning phase

 ✓ Offers from Technology providers are sometimes
 unclear/incomplete and difficult to compare on this respect

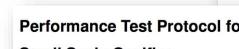
 ✓ Customers are committed to operate the plant properly and

feed appropriate fuel

RE-CORD

• Regulating & controlling these issues at the beginning as well as during the whole plant life is essential

Third-party Assessment of Performances (short & long-term)

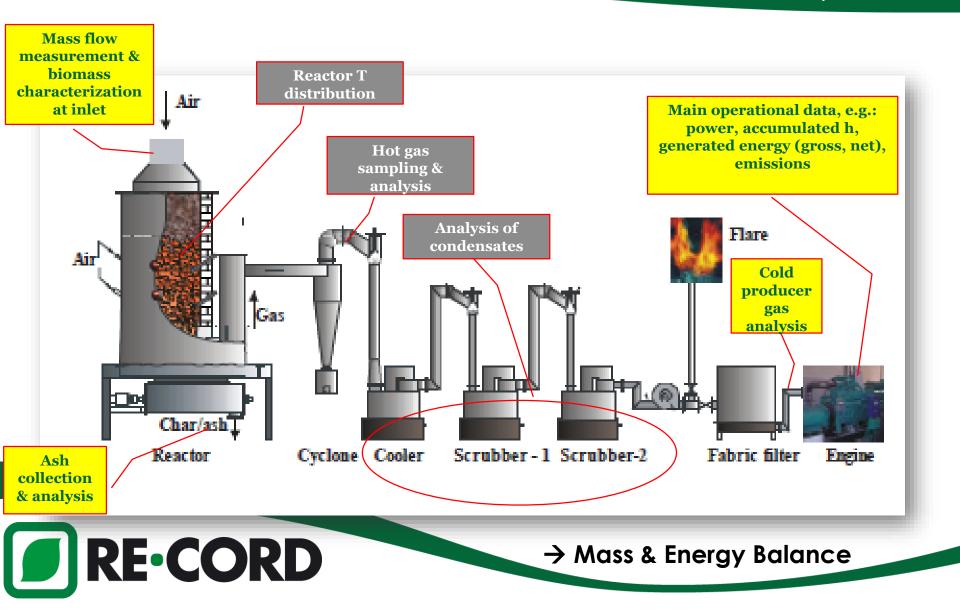

- Third-party verification is a guarantee for
 - ✓ The Customer
 - \checkmark The financing Institution
 - ✓ Technology providers
- As well as a market opportunity for the technology developers
- CTI 13 -> E0209E590 -> UNI 11603: 2015

Plants for the production and the use of gas based on biomass gasification ORGANO itato Termotecnico Italiano COMPETENTE CO-AUTORE **Performance Test Protocol for Small Scale Gasifier** White Paper elaborated 2015 under IEA Bioenergy, Task 33 Thermal Gasification of Biomass Martin Rüegsegger, ETECA GmbH, Fahrni, Switzerland November 2015 Energi/Ambient Abstract

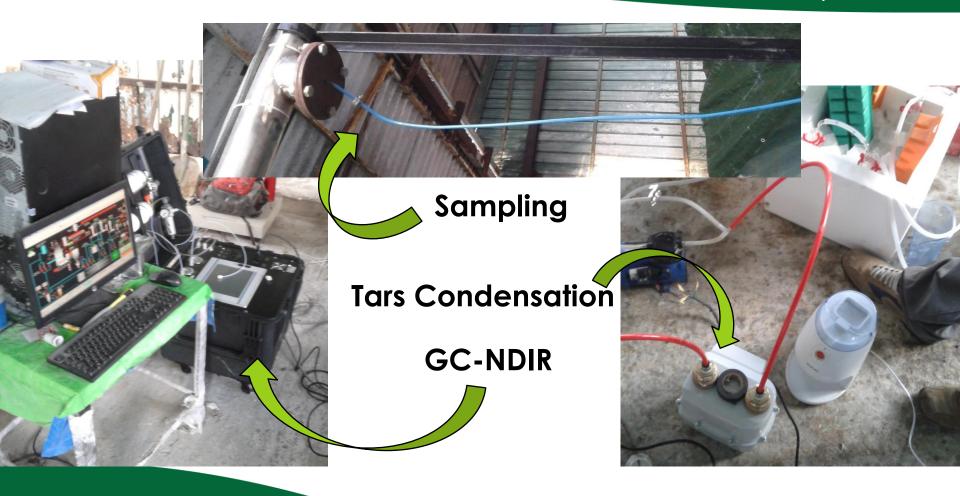
This White Paper "Performance Test Protocol for Small Scale Gasifier" [PTP] was elaborated by the IEA Bioenergy under Task 33 (Thermal Gasification). For the last years appeared more commercial available gasifier units on the market. As a guideline during a project for a Gasifier CHP unit this white paper can help to improve the project quality and the successful proof of performance after commissioning. The handover of a gasifier CHP unit from supplier to the client will be easy and successful, if there is accurate PTP existing.

IEA Bioenergy

codice progetto: E0209E590 uesto documento può essere riprodotta o diffusa con un mezzo consenso scritto di UNI.



Measuring performances of small scale gasifiers..



Equipments & skills are needed for performance assessment

<u>GAST Project</u>

Experiences in biomass GAsification in South-Tyrol: energy and environmental assessment

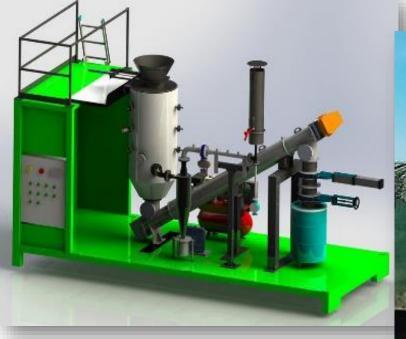
research TIS RE-CORD

innovation park

UNIVERSITÀ DEGLI STUDI FIRENZE

• Scope

- Preliminary screening of small scale biomass-gasificationbased cogeneration plants located in South Tyrol
- Two or three representative plants selected for the monitoring campaign
- Characterisation/Monitoring
- Coordinator & Partners
 - <u>Libera Università di Bolzano (prof Marco Baratieri)</u>
 - Eco Research SrL


RE-CORD

• Subcontractors: **RE-CORD**, **TIS Innovation Park**

Carbonisation + Heat ... A small biorefining approach

università degli studi FIRENZE

Key issues

- ✓ Slow Oxidative Pyrolysis
- ✓ Open top, cooled screw (discharge)
- ✓ Products: char + High T Heat

50 kg/h_in, 12 kg/h_out, 60-70 kWth
250 kg/h_in, 50 kg/h_out, 350-400 kWth

- R&D: Condensing PO + CHP ?
- Grid parity theoreticaily possible...

Conclusiong on Small Scale biomass gasification CHP systems

- CHP Gasification is a very dynamic sector, but dependent on Incentives (while PV has almost achieved Grid Parity) and Heat use.
- Decades of R&D work behind us. No need to re-invent the wheel: past experiences should drive technology evaluation and selection.
- Reliability still an issue: BPs based on running hours per year! Guarantees?
- Mix of large industries and small/very small companies on the market. Company financial dimension vs guarantee a key issue.
- Feeding adequately pretreated biomass is key for continuous operation.
- Fight on CAPEX (to make investment attractive) does not help the sector and generated lack of credibility!
- Claimed performances are sometimes overestimated. Third Party Assessment would be a useful support for Financing Institutions, Suppliers and Customers in order to develop sound BP and commercial projects.

Thanks for your Attention!

università degli studi FIRENZE

David Chiaramonti

david.chiaramonti@re-cord.org

info@re-cord.org

Contacts