Fuel flexibility in gasification: experiences and challenges

Tim Schulzke, Group Manager Thermochemical Processes and Hydrocarbons

- 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT
- 2. Fundamentals of solid fuel gasification
- 3. Gasification plants at Fraunhofer UMSICHT
- 4. Bandwidth of fuels used
- 5. Challenges for future plants
- 6. Summary

1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT

- 2. Fundamentals of solid fuel gasification
- 3. Gasification plants at Fraunhofer UMSICHT
- 4. Bandwidth of fuels used
- 5. Challenges for future plants
- 6. Summary

Patron Joseph von Fraunhofer (1787 – 1826)

Scientist

 Discovery of the »Fraunhofer lines« in the Sun's spectrum

Inventor

New manufacturing methods for reamfree glas and lenses

Entrepreneur

 Director and co-partner of a glass factory

© Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft

- 67 institutes and independent research facilities
- € 2 bn research funds
 - € 1.7 bn contract research
- More than 23 000 employees (m/f)¹
- 40 facilities in Germany
- 13 institutes in North Rhine-Westphalia
- 4 institutes in the Ruhr area

more information under:

www.fraunhofer.de/en.html

¹ 23 236 (m/f) as per 12-31-2013 including fixed-term contracts of less than 18 months.

Fraunhofer UMSICHT

Pioneer of the energy and resource transition

- Core area: Process engineering Chemical conversion »From raw material to the product«
- 489 employees (314 permanent staff) in Oberhausen and Sulzbach-Rosenberg
- Operating budget 2015: € 39.1 million
- Our subjects: Energy | Processes | Products | **Environment | Material |** Sustainability
- Our guiding themes: Production without raw materials / Energy with prudence (= English translation of UMSICHT)

Site Oberhausen

Site Sulzbach-Rosenberg

- 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT
- 2. Fundamentals of solid fuel gasification
- 3. Gasification plants at Fraunhofer UMSICHT
- 4. Bandwidth of fuels used
- 5. Challenges for future plants
- 6. Summary

Process of Gas Generation from Solid Fuels

The conversion of solid fuels into gaseous energy carrier by means of gasification requires a certain effort, which can be distributed over the major process steps

- Fuel Conditioning,
- Gasification Reactor and
- Gas Conditioning

with varying emphasis.

Gasification - Classification by Reactor Typ

Not shown: entrained flow gasifier (suitable only for very large capacity)

Gasification in fluidized beds

Advantages compared to fixed bed

- solids hold-up: more than 90 % bed material for heat transfer, therefore good controllability by fuel and air supply
- marginal temperature differences inside reactor
- Reaction temperature »freely« adjustable
 - »high« for good burn-off, high synthesis gas temperature
 - »low« for problematic fuels (e.g. straw)
- Fuel variability
 - Pellets with high density
 - Shredded material with low density and large fraction of fines
- good scalability over wide range of capacity

Disadvantages compared to fixed bed

- specific investment cost higher in small scale
- fuel must be fed continuously and consistenly

Gasification - Classification by Gasification agent

Gas composition– Comparison Air/Steam

LHV: $H_i \approx 1.38$ kWh/scm LHV, dry: $H_i \approx 1.53$ kWh/scm LHV: $H_i \approx 2.56 \text{ kWh/scm}$ LHV, dry: $H_i \approx 3.48 \text{ kWh/scm}$

Factor 2.25

General applications for synthesis gas from biomass

Challanges for Gasification

3 main difficulties

- Solid Fuel Dosing
 - affects mainly fulidized beds
 - requirements: continuous dosing (potentially against pressure)
 - fuel flowability very different: pellets, wood chips, chaff
- Distribution of gasifying agent over cross section
 - affects mainly fixed beds
 - requirement: even distribution over complete cross section
 - reactive requirement on biomass fuel: no fines allowed
 - main reason for scale-up limit (cocurrent) at about 1 MW fuel input
- Gas Cleaning
 - Tar, Sulfur, Chlorine, Ammonia, …

- 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT
- 2. Fundamentals of solid fuel gasification
- 3. Gasification plants at Fraunhofer UMSICHT
- 4. Bandwidth of fuels used
- 5. Challenges for future plants
- 6. Summary

Schematic drawing of fluidized bed gasification plant

Photograph of fluidized bed gasification plant (500 kW)

Schematic drawing of fluidized bed gasification plant

Photograph of fluidized bed gasification plant (100 kW)

- 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT
- 2. Fundamentals of solid fuel gasification
- 3. Gasification plants at Fraunhofer UMSICHT
- 4. Bandwidth of fuels used
- 5. Challenges for future plants
- 6. Summary

Fuels used

Circulating fluidized bed

- Wood flakes from reciprocating saw (FL)
- Shredded demolition wood (DW)
- Shredded plywood (PW) (ammonium sulfate)
- Sewage sludge (SS) (dried, granulated)
- Vulcanized rubber (VR) (Peeled from used tires before retreading)

Bubbling fluidized bed

- Shredded demolition wood (DW)
- Wood chips (WC)
- Shredded willow from short rotation forestry (WS)
- Shredded peat briquettes (PB)
- Wood pellets (WP)
- RRBF (MS) (refined renewable biomass fuel / conditioned MSW from MBT)

Fuels used

Fuel	bulk density	LHV	water content	ash content	particle size
	kg/m³	MJ/kg	weight-%	weight-%	mm
FL	151	16.6	9	0.7	3 - 5
DW		15.4	10.9	3.0	(0)1 - 5
PW		14.8	18.2	1.15	< 30
SS	713	8.75	5.3	47.0	(0)2 - 5
VR	524	41.8*	0.1	< 1	5 - 8
WC	255	16.5	8	0.6	1 - 30
WS		15.5	11.0	1.16	0 - 40
PB		17.9	10.2	2.49	0 - 30
WP	726	18.0	4	0.5	Ø6x20
MS	302	11.0	13-25	22-32	0 – 30

FL: Wood flakes; DW: Demolition wood; PW; Plywood; SS: Sewage Sludge; VR: Vulcanized rubber; WC: Wood chips; WS: Willow from short rotation forestry; PB: Peat briquettes; WP: Wood pellets; MS: Mixed municipal solid waste (from MBT + conditioning)

*34.4 MJ/kg w/o carbon black

Dosing systems

Circulating fluidized bed

- Storage hopper 10 m³, 1,4 x 1,4 x 5 m, discharge with screw conveyor
- Screw conveyor for fuel elevation
- Dosing hopper on scales (discharge via vibrating chute): mass dosing
- Rotary valve as pressure lock
- Screw feeder (jacket and shaft cooled)

Bubbling fluidized bed

- Storage hopper 36 m³, container with pushfloor, discharge with screw conveyor
- Screw conveyor for fuel elevation
- Dosing hopper with frequency controlled screw conveyor discharge: volume dosing \Rightarrow calibration needed for every fuel
- Rotary valve as pressure lock
- Screw feeder (jacket and shaft cooled)

- 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT
- 2. Fundamentals of solid fuel gasification
- 3. Gasification plants at Fraunhofer UMSICHT
- 4. Bandwidth of fuels used
- 5. Challenges for future plants
- 6. Summary

Challenges

Solid fuel handling

Flowability of fuel

-> bridging in storage hoppers / uneven transport on vibrating chute

Folie 26 © Fraunhofer UMSICHT

Large items contained in MW

Promised to be smaller than 40 mm and free of metals

Folie 27 © Fraunhofer UMSICHT

Calibration of dosing screws – 1. batch as delivered

Calibration of dosing screws – 2. batch

Calibration of dosing screws – 2. batch

Challenges

Solid fuel handling

- Flowability of fuel
 - -> bridging in storage hoppers / uneven transport on vibrating chute
- Melting/Softening in feeding screw

Feeding screw – jacket and shaft cooling

Challenges

Solid fuel handling

- Flowability of fuel
 - -> bridging in storage hoppers / uneven transport on vibrating chute
- Melting/Softening in feeding screw
- High amounts of fines (< 1 mm): discharge with sealing air</p>

Producer gas cleaning

- High sulfur content with SS, PW and esp. VR SS and PW needed frequent catalyst regeneration gas from VR only usable for combustion (with flue gas desulfurization)
- High ammonia content with SS, PW
 -> installation of ammonia scrubber
- Soot accumulation in circulating fluidized bed with VR (extremely different reactivity of rubber and carbon black)
- Variety of contaminants for MSW-based fuel -> combustion preferable

- 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT
- 2. Fundamentals of solid fuel gasification
- 3. Gasification plants at Fraunhofer UMSICHT
- 4. Bandwidth of fuels used
- 5. Challenges for future plants

6. Summary

Summary

Proven fuel bandwidth for gasifier

- Water content from 0 up to 40 %
- Ash content from 0 up to 50 % (ash softening temperature > 950 °C)
- Minimum LHV: 6 MJ/kg (1.7 kWh/kg) as received
- Woody biomass, sewage sludge (dried, granulated), rubber, RRBF, etc.

Challenges

- Gas cleaning to be specially designed for each fuel
- Gas cleaning for high contaminated fuels (gas boiler + steam cycle)
- Minimum flowability required (reproducible)
- Fuels composed of components with very different reactivity may need special attention / reactor design (e.g. rubber: isoprene and carbon black)

Fraunhofer UMSICHT Department Biorefinery & Biofuels

Thank You for Your kind attention!

Contact: Fraunhofer UMSICHT

Osterfelder Strasse 3, 46047 Oberhausen, Germany E-Mail: info@umsicht.fraunhofer.de Internet: http://www.umsicht.fraunhofer.de/en

Dipl.-Ing. Tim Schulzke

Telephone: +49 208 8598 1155 E-Mail: tim.schulzke@umsicht.fraunhofer.de

